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Abstract 

Proteolytic enzymes are available in the entire livelihood and 
facilitate in growth of cells along with cell differentiation. Proteases 
are the hydrolytic enzymes that act as biocatalysts for the 
degradation of proteins into smaller peptides and amino acids. 
Microorganisms are capable and provide economical source of 
alkaline protease enzymes that are able to generate a constant and 
reliable supply of desired products. Alkaline proteases comprise the 
major group of enzymes from bio-industrial point of view with large 
number of applications. They play a significant position in diverse 
biotechnological industries, viz. in leather, detergent, food & feed 
and pharmaceutical areas. This review draws attention on different 
sources of proteases with particular consideration on bacterial 
alkaline proteases. A variety of nutritional as well as environmental 
parameters influencing the production of alkaline proteases with a 
foremost view from Bacillus species in submerged fermentation 
conditions are discussed. The biochemical characterization such as 
purification aspects along with the physicochemical properties of 
alkaline proteases from several Bacillus species are also addressed in 
brief which could facilitate to recognize enzymes with higher 
stability and activity above extreme temperature and pH, in order 
that they can be exploited for industrial applications. 

Key Words: Proteolytic enzymes, Alkaline Proteases, optimization 
and characterization, Industrial uses. 

Introduction  

Proteins the indispensible part of all living 
forms has been mastered by a molecule of its 
own kind enzyme “Protease” (catalytic 
protein scissor). The world market for 
enzymes is expected to record Compound 
Annual Growth Rate (CAGR) of 
approximately 7.8% during the forecast 
period of 2015–2020 and reach USD 
6.30 Billion in terms of value (1). Proteases 

represent one of the three largest groups of 
industrial enzymes and account for about 
60% of the total global enzyme market (2). 
The most basic classification for proteases is: 
Neutral, Acidic and Basic (Alkaline 
protease). According to the Enzyme 
Commission (EC) classification, proteases 
belong to third class (hydrolases), and sub-
group four (which hydrolyse peptide bonds) 
(3). Thus, Microbial proteases (EC 3.4.21-24 
and 99, peptidyl-peptide hydrolases) are 
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among the most important hydrolytic 
enzymes that hydrolyse proteins via the 
addition of water across peptide bonds (4). 
Four mechanistic classes are documented by 
the EC and in these classes; six families of 
proteases are recognized till date: serine 
proteases (EC 3.4.21), serine carboxy 
proteases (EC 3.4.16), cysteine proteases (EC 
3.4.22), aspartic proteases (EC 3.4.23), 
metallo peoteases I (EC 3.4.24) and metallo 
carboxy proteases (EC 3.4.17) (5). In contrast 
to plants and animals, microbes represent as 
a better source of proteases because they can 
be cultured in large volume in a short 
duration, are comparatively inexpensive, 
and can produce a continuous supply of 
metabolites. Being extracellular in nature 
and are directly secreted by the producer 
organism into the fermentation medium, 
simplified the downstream processing of the 
enzyme (6). The kind & volume of 
contribution made by researchers towards 
all the three type of proteases, it’s difficult to 
summarize all in one article.  Hence, the 
present study attempts to review alkaline 
proteases from microbes in general and 
Bacillus species in particular. 

Among microorganisms, the genus 
“Bacillus” is an important source of 
industrial alkaline proteases and is probably 
the only genus being commercialized for 
alkaline protease production (7-8). The 
reason for this is their wide temperature, pH 
tolerance and thermal stability (9). The first 
alkaline protease Carlsberg (BIOTEX) from 
B. licheniformis was commercialized as an 
additive in detergents in the 1960s (10). 
Bacillus derived alkaline proteases are of 
immense utility in different sectors. The 
potent avenues that established with use of 
alkaline proteases are detergent, leather, 

pharmaceuticals, food, textile, silk, bakery, 
soy processing, meat tendering, brewery, 
protein processing, peptide synthesis, ultra 
filtration membrane cleaning and recovery 
of silver from photographic films (11-13). 
Owing to their immense demand in 
industries, researchers are persistently 
investigating diverse aspects of proteases 
(14).  

Laboratories engaged in alkaline protease 
production studies are making efforts to 
improve upon existing potential alkaline 
protease producing bacteria, particularly 
belonging to Bacillus sp. In this regard, 
different biotechnological approaches like 
immobilized cells, gene amplification etc. 
have been employed (8, 15-16). Therefore, 
keeping in view the importance of alkaline 
proteases in different sectors, the review will 
focus on potential emerging strains for 
alkaline protease along with production, 
purification and properties of alkaline 
proteases. 

Potential Emerging Strains for Alkaline 
Protease  

Emerging strains are need of the hour for 
the fulfillment of the high demand of 
alkaline protease in present scenario. 
Potential microbes has been screened, 
studied and established for extracellular 
alkaline protease production. Amongst 
microbes bacteria has been appraised for its 
potential to produce extracellular protease 
production. More than 50 species of Bacillus 
has been established for alkaline protease 
production. The percentage distribution of 
various microbes for alkaline protease 
production (Fig 1) are as follows bacteria, 
fungus and actinomycetes are 81, 11 and 8%, 
respectively.  
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Fig: 1 Percentage distribution of alkaline protease producing microorganisms 

Bacteria 

Bacterial strains have been the major source 
of alkaline proteases with the genus Bacillus 
being the most predominant source (Table 
1). The most potential alkaline proteases 
producing bacilli are the strains of B. 
licheniformis, B. subtilis, B. amyloliquifaciens, B. 
mojavensis and B. circulans (17- 20). Microbial 
proteases, especially from Bacillus sp. have 
traditionally held the predominant share of 
the industrial enzyme market of the 
worldwide enzyme sales with major 
application in detergent formulations (21). 

The first report about commercial use of an 
alkaline protease enzyme was that of an 
extracellular alkaline serine protease from 
alkalophilic Bacillus strain 221 during 1971. 
Bacterial alkaline proteases are in general 
characterized by their high activity at 
alkaline pH, for instance, pH 10 and their 
broad substrate specificity. Their optimal 
temperature is around 60ºC. These 
properties of bacterial alkaline proteases 
make them suitable for use in the detergent 
industry.  

Table 1. Different alkaline protease producing bacterial species 

 Bacillus sp. Source (Reference) 

Oceanobacillus iheyensis O.M.A18 

B. alcalophilus ATCC 21522 

(22) 

(23) 

B. amyloliquefaciens (19) 

Bacillus sp. (24) 

81% 

11% 8% 

Bacteria fungus Actinomycetes

Aspergillus 

Pencillium Bacillus 

Streptomyces 

Pseudomonas 
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Bacillus sp. SSR1 

Bacillus sp. MIG 

Bacillus sp. L21 

Bacillus sp. GPA4 

(25) 

(26) 

(27) 

(28) 

B. subtilis  

B. subtilis MTCC N0-10110 

B. subtilis SVR-07 

Bacillus subtilis RSKK96 

(29-30) 

(31) 

(32) 

(33) 

B. firmus 

B. firmus Tap5 

(34) 

(35) 

B. proteolyticus (36) 

B. thuringiensis (37) 

B. licheniformis 

B. licheniformis NCIM-2042 

(38) 

(39) 

B. pseudofirmus AL-89 (40) 

B. circulans (20) 

B. cereus 

B. cereus VITSN04 

(41) 

(42) 

B. amovivorus (43) 

B.  proteolyticus-CFR3001 (11) 

B. aquamoris (44) 

Bacillus clausii (45) 

Bacillus sphaericus (46) 

Thermophilic strains Source 

Bacillus sp. JB-99 

Bacillus sp. Strain SMIA 2 

Bacillus RV.B2.90 

(47) 

(48) 

(49) 

B. licheniformis RP1 (50) 

B. thermoruber BT2T (51) 

B. stearothermophilus TLS33 (52) 

B. pumilus CBS (53) 

Thermomonospora fusca (54) 

Thermoactinomycetes sp. (55) 

A. stearothermophilus (56) 

Geobacillus (57) 
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Pseudomonas aeruginosa (58) 

Vibrio fluvialisstrain VM10 (59) 

Gamma-Proteobacterium (60) 

Bacillus sp. Ve1 (24) 

Bacterium O.M.E12 (22) 

 

Fungi and Actinomycetes 

Fungi present a wide variety of proteases 
than do the bacteria (Table 2). They are 
active over a wide range of pH eg., 
Aspergillus oryzae produces acidic, neutral 
and alkaline proteases which have broad 
substrate specificity but they have low 
reaction rate and lesser heat tolerance than 
bacterial proteases. Fungal alkaline 
proteases are used in food protein 
modification. Among fungi, Aspergillus sp. 
(61), Conidiobolus sp. and Rhizopus sp. (62) 
also produce alkaline proteases. Among 
yeast, Candida sp. has been studied in detail 
as a potent alkaline protease producer (63). 

Among actinomycetes (Table 3), strains of 
Streptomyces are preferred protease sources 
(64). Partial purification and characterization 
of a noval alkaline protease produced by 
Nocardiopsis sp. was reported by Moreira et 
al (65). The serine and metalloproteases 
produced by Streptomyces sp. 594 in 
submerged (SF) and solid-state fermentation 
(SSF), using feather meal, an industrial 
poultry residue (keratinous waste) and corn 
steep liquor (corn processing by-product), 
were found to be active over a wide range of 
pH (5.0-10.0) and high temperatures (55-
90°C) (66). 

Table 2 Alkaline protease producing fungal species 

Fungi Source Reference 

Penicillium charlesii (67) 

P. lilacinus (68) 

P. griseofulvim (69) 

Fusarium graminearum (70) 

Chrysoporium keratinophilum (71) 

Scedosporium apiosermum (72) 

A. melleus (73) 

A. niger  (74) 

A. fumigatus (75) 

A. flavus (76) 

A. terreus (61) 

A. clavatus (77) 

A. nidulans HA-10 (78) 

A. oryzae (79) 

A. awamori (80) 

Conidiobolus coronatus (81) 

Botrytis cinerea (82) 
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Table 3 Alkaline protease producing Actinomycetes 

Actinomycetes Source reference 

Streptomyces sp. CN902 (83) 

Streptomyces sp. DP2 (64) 

Streptomyces NRRLB-8165 (84) 

Streptomyces fradial (85) 

Streptomyces penutius (86) 

Streptomyces sp. 594 (66) 

Streptomyces pseudogrisiolus NCR-15 (87) 

Nocardiopsis Alkalophila sp Nov.  (88) 

Nocardiopsis TOA-1 (89) 

Nocardiopsis sp. NCIM 5124 (90) 

Saccharomonospora virdis SJ-21 (91) 

 

Microbial Production of Alkaline Protease  

Protease production is an inherent property 
of all organisms and these are generally 
constitutive however at times they are 
partially inducible (92). The proteases are 
largely produced during stationary phase 
and thus are generally regulated by carbon 
and nitrogen stress. Different methods in 
submerged fermentations have been used to 
regulate the protease synthesis by 
combinations of either of the strategies, such 
as fed-batch, continuous, and chemostat 
cultures (93). These strategies have resulted 
in high yields of alkaline protease in the 
fermentation medium (94). 

Protease being associated with the onset of 
stationary phase, their production is often 
related to the sporulation stage in many 
bacilli, such as B. subtilis and B. licheniformis 
(95). On the contrary, few reports also 
suggest that sporulation and protease 
production though may co-occur, but are 
not related as the spore-deficient strains of 
B. licheniformis (96) and B. stearothermophilus 
(97) were not protease-deficient. A similar 
observation has also been reported in B. 
licheniformis by analysis of nucleotide pools 
(GTP and ATP) in the cells (98). These 

results strongly suggested that the protease 
production is under stringent response to 
amino acid deficiency and is related to the 
Gppp ratio in the cell. The transitions 
between different growth phases or different 
nutritional limitations can be discerned by 
the alterations in the nucleotide pool as a 
marked decrease in the GTP content of the 
cells (after addition of mycophenolic acid in 
the exponential phase) was found to 
increase the protease production during the 
stationary phase (95). 

Hence, it conclusively suggests that 
extracellular protease production is a 
manifestation of nutritional limitation, at the 
onset of stationary phase. However, final 
protease yield during this phase is also 
determined by the biomass produced during 
exponential phase. Therefore, media 
manipulations are needed to maximize 
growth and hence protease yields.  

Effect of carbon sources on alkaline protease 
production 

Carbon sources used in the culture media 
vary greatly in type and concentration for 
different types of bacteria and other 
microorganisms. Among various types of 
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carbon sources, carbohydrates are used 
predominantly. Majority of the 
microorganisms utilize glucose and starch as 
the preferred source of carbon, though other 
types of carbohydrate and non-carbohydrate 
sources have been reported to be utilized by 
protease producing microorganisms (51, 70). 
In different studies, glucose, glycerol, starch, 
sucrose, fructose, maltose, galactose and 
lactose have been reported as optimum 
carbon sources for alkaline protease 
production (92, 99). Mukherjee et al (100) 
used glucose, fructose, galactose, maltose, 
sucrose and lactose (10% w/w) for alkaline 
protease production by thermophilic B. 
subtilis with maltose supporting maximum 
alkaline protease production under solid 
state fermentation as co-carbon source. 
Lactose was reported as the best carbon 
source for protease production by B. 
halodurans with a specific activity of 135.5 
U/mg protein, which indicated that, this 
bacterium was able to produce β-
galactosidase for consuming lactose (101). 
Among other carbon sources, B. alcalophilus 
TCCC11004 exhibited highest productivity 
of alkaline protease in medium containing 
maltodextrin (102), B. cereus MTCC 6840 
utilized fructose as preferred carbon source 
(157) while whey and sucrose were used 
preferably by Serratia marcescens ATCC 
25419 (104). 

Glucose, the most commonly used carbon 
source has been shown to be inhibitory for 
alkaline protease production in some 
bacteria such as Geobacillus caldoproteolyticus 
strain SF03 (105), B. horikoshii (106) and B. 
nesternkonia sp. AL-20 (40). This negative 
effect of glucose on protease production is 
attributed to catabolite repression as it has 
been established that the catabolite control 
protein (Ccp A) is responsible for the 
regulatory mechanism of glucose 
catabolism, and acts as a signal for the 

repression in protease synthesis (107). On 
the other hand, in some Bacillus strains such 
as Bacillus sp. AR 009 (108), B. licheniformis 
ATCC 21415 (109), B. thuringiensis cc7 (110), 
B. licheniformis N-2 (111), Bacillus sp. 
EL31410 (112) and B. cereus strain 146 (113), 
enhanced protease yields have been 
reported upon supplementation of glucose 
in the production medium. 

Besides glucose, starch is another widely 
used carbon source and has been shown to 
induce protease synthesis in alkalophilic B. 
pumilus, B. cereus MCM B-326 and Bacillus 
sp. 2-5 (114-116), but was found to be 
dependent on starch type. However, 
supplementation of potato starch, corn 
starch, and pearl millet flour exerted an 
inhibitory effect on alkaline protease 
production in Bacillus sp. Y (117). This 
negative influence on enzyme synthesis was 
probably due to the presence of protease 
inhibitors in these carbon sources (118).  

Natural agricultural materials such as Rice 
bran, soybean, wheat flour, wheat bran, corn 
bran, corn starch, orange peels have been 
reported to produce alkaline proteases (119-
120). Ahmed et al (121) also observed the 
effect of different carbon substrates i.e. 
sunflower meal, soybean meal, cotton seed 
meal, rice husk, rice polish, rice bran and 
wheat bran on alkaline protease production 
where by maximum activity was found on 
rice husk (110.42 U/ml). Furthermore, 
Kumar et al (122) observed wheat bran as the 
best carbon source with the maximum 
protease activity of 1160 U/ml. Molasses as 
a supplement was also found to be effective 
for protease production in Bacillus species 
(123, 124). In another report, wheat bran, rice 
bran and Cotton Deoiled Meal (CDM) was 
used in the production medium (125). The 
use of CDM revealed a maximum alkaline 
protease production (589.20 U/ml) with 
glucose as carbon source. 
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Non-carbohydrate sources such as organic 
acids as sole carbon sources have also been 
found to increase the yield of alkaline 
protease by Bacillus sp. B1 (126). Researchers 
studied the effect of citrate, fumarate, 
succinate, glucose and fructose on protease 
production by B. alcalophilus and found that 
citrate, fumarate and succinate can be 
effectively utilized for protease production 
with citrate at 1.0% level being the most 
potent carbon source (127). Calik et al (128) 
used citric acid as a sole carbon source for 
alkaline protease production by B. 
licheniformis. On the other hand, the 
presence of citric acid and trisodium citrate 
in the medium repressed the growth and 
yield of alkaline protease by B. licheniformis 
N-2 (111). The citric acid inhibition is 
attributed to chelation of divalent ions from 
the medium, resulting in ion depletion in the 
growth medium (129). 

Effect of nitrogen sources on alkaline 
protease production 

Synthesis of the alkaline protease by 
microorganisms is strongly stimulated by 
the presence of the nitrogen sources 
(proteins and peptides) in the culture 
medium, which have regulatory effects on 
enzyme synthesis (24). Different bacteria 
have diverse preferences for either organic 
or inorganic nitrogen for growth and 
protease production, although complex 
nitrogen sources are usually employed for 
alkaline protease production (100, 130).  

Mukherjee et al (100) has shown a preference 
for organic nitrogen sources (beef extract 
followed by yeast extract) compared to 
inorganic nitrogen for protease production 
by B. subtilis DM-04. The inducing effect of 
nitrogen sources (peptone, soybean meal 
and beaf extract) on bacterial alkaline 
protease production has also been reported 
by (131-132). A mixture of nitrogen sources 

i.e. yeast extract in addition to casamino 
acid, peptone or L-glutamate were used and 
achieved highest protease activity was 
observed with Bacillus sp. 2-5 (116). In 
addition to this, a combination of yeast 
extract and cotton seed meal induced 
maximum alkaline protease production by 
B. alcalophilus TCCCC11004 (102). In a sharp 
contrast to these observations, organic 
nitrogen sources like peptone and yeast 
extract were found to suppress the protease 
production by an alkalophilic strain of 
Arthrobacter ramosus MCM B351 (133). 
However, Patel et al (24) observed higher 
protease production with organic nitrogen 
sources. Similarly, free amino acids and 
inorganic nitrogen sources, such as NH4Cl, 
NH4NO3 and (NH4)2SO4 have been reported 
to repress enzyme synthesis in Bacillus sp. 
(134, 116, 136). The repression of growth and 
protease biosynthesis is thought to be due to 
the fast release of ammonia from these 
inorganic nitrogen sources (111). Inorganic 
nitrogen sources such as ammonium nitrate 
(48), (NH4)2SO4 (110) have been successfully 
used as optimal nitrogen sources. 

Skim milk exhibited a prominent effect on 
protease production by B. subtilis (121). 
Furthermore, B. mojavensis produced 
maximum alkaline protease when casein 
and casamino acids are used as nitrogen 
sources (94). The maximum protease 
production was exhibited with gelatin 
concentration at 1% (w/v) for B. anthracis S-
44 and Bacillus sp. K 30 (137), 0.5 % (w/v) for 
B. firmus 7728 (138). Saurabh et al (139) 
observed maximum alkaline protease 
production in the presence of casein from 
Bacillus sp. and B. pseudofirmus SVB1, 
respectively. While, Kanekar et al (140) used 
soya-cake as the exclusive carbon and 
nitrogen source for protease production. 
Groundnut cake as the main nitrogen source 
gave maximum protease activity of 940 
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U/ml by Bacillus sp. (122). Kanchana and 
Padmavathy (141) observed Bengal gram 
powder as the best substrate for highest 
enzyme activity.  

Among the natural complex substances 
employed as nitrogen sources, Corn Steep 
Liquor (CSL) was found to be a cheap and 
suitable source of nitrogen by some workers 
(142). Apart from serving as a nitrogen 
source, CSL also provides several 
micronutrients, vitamins, and growth-
promoting factors. However, its use is 
limited by its seasonal and interbatch 
variability. While, Moreira et al (65) found 
that B. pumilus UN-31-C-42 showed 
maximum protease production on 2% bean 
powder preferably, when supplemented to 
the medium, Bacillus sp. JB-99 used KNO3 as 
the preferred nitrogen source (47).  

Now days, there has been increasing trend 
to utilize raw/unprocessed carbon and 
nitrogen sources so as to cut down the cost 
of production. Hence, there are many 
reports where agricultural or industrial 
by/waste products are being used for 
cultivation of microorganisms. Soybean 
contains 40% of protein, 17% carbohydrate, 
18% oil, traces of metals, moderate amount 

of vitamins and amino acids, thus supplying 
almost all the nutrients required for the 
growth of bacilli. Besides that, soybean also 
contains small amount of enzymes such as 
protease, urease and lipoxidase (139). 
Soybean meal has been used as inducer for 
protease production from Conidiobolus 
coronatus (143), B. cereus MCM B-326 (115), B. 
licheniformis N-2 (111), recombinant B. 
subtilis (144), B. subtilis BS1 (145) and Bacillus 
sp. I-312 (146). The protease production was 
considerably enhanced (4771 U/ml) when B. 
licheniformis NH1 was grown in medium 
containing hulled grain of wheat as nitrogen 
source (147). Chu (148) used a combination 
of wheat flour and soybean meal for 
optimized alkaline protease production 
(2560 Uml-1) by Bacillus sp., rice bran @ 1 per 
cent (120), wheat bran and lentil husk (149), 
wheat bran @ 2.5 per cent (150) and 
combination of glucose and soybean meal 
(125) were also found suitable for 
production of alkaline protease in different 
studies. 

A comprehensive account of cultural 
conditions for maximum alkaline protease 
production from various Bacillus sp. has 
been listed in Table 4. 
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Table 4: Fermentation conditions for production of alkaline proteases from bacteria 

    Microorganism pH Temperature (°C) Agitation 
(rpm) 

Incubation 
period (h) 

Nitrogen sources Carbon 
 sources 

Reference 
 

Bacillusmycoides 7 30 180 48 (NH4)2SO4, peptone Glycerol (151) 
Bacillus polymyxa 9 50 n.s. 72 Casein Glucose (132) 

Bacillus licheniformis ATCC 21415 
Bacillus sp. 

7 
 

8 

30 
 

37 

250-400 
 

120 

48 
 

18 

Soybean, (NH4)2PO3 
 
Peptone, yeast extract 

Lactose, Glucose 
Glucose 

(109) 
 
(152) 

B. horikoshii 9 34 250 16-18 Soybean, casein       * (106) 

Bacillus pumilus MK6-5 9.6 35 250 60 Corn-steep liquor Glucose (153) 

        

Bacillus subtilis PE-11 9 37 140 48 Peptone Glucose (154) 

B. mojavensis 10.5 50 250 10-12 Casamino acid Glucose (155) 

Bacillus sp. RGR-14 7 37 250 96 Soybean meal, 
casamino acid 

Starch (156) 

Bacillus sp. MIG 7.5 30 120 48 Yeast extract Wheat bran  (26) 

B. cereus MTCC 6840 9 25 150 24 Yeast extract + Peptone Fructose (157) 

Bacillus sp. 
B. cereus MCM B-326 

9 
9 

50 
30 

n.s. 
100 

48 
36 

Soybean meal 
Soybean meal 

Wheat flour 
Starch 

(148) 
(115) 

        
B. circulans 10.5 25-30 200 96 Soybean meal Glucose (125) 

B. licheniformis RPk 9 37 200 48 Yeast extract Chicken 
fearhers 

(136) 

B. alcalophilus TCCC11004 9 34 180 50 Yeast extract, cotton 
seed meal 

Glucose, 
maltodextrin 

(102) 

B. thuringiensis cc7 
B. licheniformis NCIM-2042 
Streptomyces sp. DP2 
Bacillus licheniformis ATCC 12759. 

Bacillus licheniformis P003 
 
Bacillus circulans MTCC  
7906 

8.5 
7.1 
5 
7 

9.0 
 
 

9.5 

29 
37 

50-100 
37 
25 

 
 

28 

150 
180 
250 

- 
150 

 
 

200 

48 
86 

72-96 
- 

72 
 

 
96 

Casein, urea, 
(NH4)2SO4 
Soybean meal 
Mustard cake 
Urea,  
Sodium nitrate     
Beef extract 
Potato peel 

Glucose 
Starch 
fructose 
Wheat flour 
Rice flour 
Glucose 
 
glucose 

(110) 
(39) 
(158) 
(159) 
(160) 
 
 
(161) 
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Biochemistry of Alkaline Protease 

Preparation of extracellular alkaline 
protease by enzyme concentration and 
purification 

Purification of microbial proteases has 
received a great attention. A crude protein 
extract derived from some types of physical 
or chemical manipulation of the source will 
typically contain several types of 
contaminating molecules such as 
carbohydrates, lipids, nucleic acids, 
proteins, salts and other cellular debris. 
Separation of the protein fraction of the 
crude protein extract containing these 
contaminants is usually referred to as the 
capture step. One of the more popular 
methods of protein capture is the bulk 
precipitation from the crude extract (162). 
Precipitation also performs both purification 
and concentration steps. It is generally 
affected by the addition of reagents such as 
salt or an organic solvent that lower the 
solubility of the desired proteins in an 
aqueous solution. 

Generally, purification procedures include 
3-4 main steps e.g. Ammonium sulfate 
fractionation followed by dialysis (to 
remove excess salts and impurities) and then 
applying different sephadex 
chromatographic columns, using ion-
exchange or adsorption chromatography 
and many cases performing the so called 
polyacrylamide gel electrophoresis 
technique (163). This protocol has been 
successfully employed in Bacillus sp. and 
Pseudomonas sp. (95). Joshi (35) used phenyl 
sepharose instead of DEAE-sephacryl where 
by the protease was completely retained by 
the matrix and all other impurities went into 
washing. The resultant bound protease was 
further eluted with 50% ethylene glycol. 

Infact, Chromatography has been protease 
specific as Durham et al (164) purified 
proteases (AS and HS) from an alkalophilic 
Bacillus sp. strain GX6638 (ATCC 53278) by 
ion exchange chromatography that were 
distinguishable by their isoelectric point, 
molecular weight and electrophoretic 

mobility. A thermostable alkaline protease 
was purified from an alkaliphilic 
thermophile Bacillus sp. B18 by using DEAE 
and CM-Toyopearl 650M column 
chromatographies (165). Mane and Bapat 
(166) isolated an alkaline protease from 
culture filtrate of B. subtilis NCIM 2713 by 
ammonium sulphate precipitation and was 
purified by gel filteration. Two novel 
extracellular serine proteases was reported 
in B. sphaericus (25). The crude enzyme was 
purified to homogeneity from the cell free 
culture filtrate by a combination of 
ultrafiltration, ammonium sulphate 
precipitation and chromatographic methods. 
Partial purification of protease enzyme 
which was performed using chilled acetone 
for enzyme precipitation (47) is one of the 
different methods that were applied for the 
protease purification. 

Different workers have reported variable 
yield of purified (by enzyme precipitation 
followed by chromatographic separation) 
proteases. Kumar (153) purified an alkaline 
protease from B. pumilis MK6-5 by using 
ammonium sulphate precipitation, ion 
exchange and gel-filtration 
chromatographies, where in a 26.2% 
recovery of enzyme with 36.6 fold 
purification was recorded. Tang et al (167) 
treated crude enzyme of engineered strain of 
Bacillus sp. BA071 with ammonium sulphate 
fractionation and further purified it with 
CM-Sephadex-C-50 and Sephadex-G-75. The 
purity of enzyme was increased by 76.2 
times. Thermostable serine alkaline protease 
from a newly isolated B. subtilis PE-11 was 
purified in a two step procedure involving 
ammonium sulphate precipitation (between 
50%-70%) and sephadex G-200 gel 
permeation chromatography. The enzyme 
was purified 21-fold with a yield of 7.5% 
(154). The enzyme from B. pseudofirmus AL-
89 grown on chicken feather was purified to 
electrophoretic homogeneity following 
ammonium sulphate precipitation (60% 
w/v), ion exchange, hydrophobic 
interaction and gel filtration 
chromatography. The yield and fold enzyme 
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purification was 44.1% and 43.7 times, 
respectively (40).  

An alkaline protease producing 
haloalkaliphilic bacteria was isolated from 
west coast of India by Gupta et al (95). The 
protease secreated by this bacterium was 
purified 10 fold with 82% yield by a single 
step method on phenyl sepharose 6 fast flow 
column. The alkaline protease from B. cereus 
was purified to homogeneity by ammonium 
sulphate precipitation, concentrated by 
ultrafiltration followed by its anion 
exchange chromatography (168). Joo and 
Chang (119) carried out simple purification 
of an oxidant and SDS-stable alkaline 
protease produced by B. clausii I-52. The 
enzyme was purified to homogeneity with 
overall recovery of 79% and 10-fold 
purification from culture supernatant using 
Diaion HPA75, phenyl-Sepharose and 
DEAE-Sepharose column chromatographies. 
Kazan et al (169) observed 16-fold 
purification from culture filtrate of B. clausii 
GMBAE 42 by DEAE-cellulose 
chromatography, with a yield of 58%. In 
another report, a thermophilic neutral 
protease was purified and characterized 
from a thermophilic Bacillus strain HS08. 
The purification steps included ammonium 
sulphate precipitation (80% saturation), with 
columns of DEAE-Sepharose anion 
exchange chromatography and sephacryl S-
100HR on AKTA purifier 100 protein liquid 
chromatography. This method gave a 4.25 
fold increase of the specific activity and had 
a yield of 5.1% (170). Banik and Prakash 
(171) carried out ammonium sulphate 
fractionation at 80% saturation, 
concentration by ultrafiltration, anion 
exchange chromatography and gel filtration 
to have a 16-fold purification of alkaline 
protease. In another report, two alkaline 
proteases produced by marine Bacillus sp. 
MIG were observed. Two proteases were 
purified to homogeneity using acetone 
precipitation (two volumes of cold acetone), 
cation exchange chromatography on CM-
Sepharose CL-6B, followed by gel filtration 
on Sephadex G-75 superfine. These steps 

were very effective and combined to give 
overall purification of 19.3 and 16.1 fold for 
the protease 1 (Pro 1) and protease 2 (Pro 2), 
respectively (26). Darani et al (116) reported 
a new strain of Bacillus sp. from alkaline soil, 
whose purification was conducted by 
fractionation (55%), concentration and 
certain exchange chromatography. The yield 
and fold of enzyme purification was 24% 
and 50 times respectively. Alkaline protease 
enzyme from B. pumilis CBS was purified by 
using salt precipitation (between 40% and 
60%) and gel filtration HPLC. The yield and 
fold enzyme purification were 12% and 38 
times, (53) respectively. 

Protease from B. subtilis KO strain (172) was 
precipitated by using ammonium sulphate 
fractionation (20%) and further purified by 
column chromatography (Sephadex G-200, 
mesh 200 µ) techniques. Fakhfakh et al (136) 
purified protease produced by B. 
licheniformis RPk to homogeneity from the 
culture supernatant by a 3-step procedure. 
The keratinolytic protease was precipitated 
by (NH4)2SO4 between 40 and 60% (32,142 
U/mg of protein) which was then subjected 
to gel filtration on a Sephadex G-100 column 
and DEAE-cellulose. The elution profiles of 
the protease and proteins from Sephadex G-
100 yielded a single peak of protease activity 
with an increase of 4.4 fold in specific 
activity and 52.8% recovery. A 6.8 fold 
purification of TC4 protease from B. 
alcalophilus TCCC11004, 5.34 fold alkaline 
protease purification of B. firmus Tap5 and 
13 fold purification of a thermophilic 
alkaline protease from Bacillus sp. were 
reported by Cheng et al (102), Joshi (35), 
(141), respectively by employing gel 
filtration, ammonium sulphate or acetone 
precipitation protocols. 

The molecular weights of alkaline proteases 
generally range from 15 to 35 kDa (132, 154, 
173) with few reports of higher molecular 
weights of 36.0 kDa (164), 42 kDa from 
Bacillus sp. PS719 (174) and a very high (90 
kDa) from B. subtilis (175). Recent reports on 
different isolated species for alkaline 
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proteases production and its purification 
strategies along with results of respective 

studies are summarized in table 5. 

Table 5 Recent purification strategies adopted for alkaline proteases from different 
microorganisms 

Microorganism Isolation 
/Procurement 

Purification Technique Fold 
purific-

taion 

 

Molecular 

weight 

Reference 

B. licheniformis MP1 shrimp waste  

 

Ultrafilteration + sephadex 
G-100 gel filteration + Mono 
Q-sepharose ion exchenge 
chromatography 

3.9 30 (176) 

B. subtilis Enzyme 
Biotechnology 
laboratory, 
University of 
Agriculture 
Faisalabad, 
Pakistan 

Ammonium sulphate 
precipitation (40-70% 
saturation) + dialysis + 
sephadex G-100 column 
chromatography 

1.9 27 (177) 

B. cereus 1173900 Waste water from 
tanning industry 

Ammonium sulphate 
precipitatipn (70%) + 
dialysis + sephadex G-100 

53.64 66 (178) 

Serratia marcescens S3-
R1  

 

Korean ginseng 
rhizosphere. 

 

Ammonium sulfate 
precipitation + DEAE-
Sepharose anion-exchange 
chromatograph + Mono Q 
chromatography  

- 50 (179) 

Bacillus megaterium soil Ammonium sulfate 
precipitation + DEAE-
cellulose ion-exchange 
chromatography + gel 
filteration sephadex G-200 

P1=13.6
3 

P2= 7.72 

P1=28 

P2=25 

(180) 

Saccharomycopsis 
fibuligera strain R64 

Tape Indonesian 
fermented food 

50% ammonium sulfate 
precipitation + dialysis + gel 
filteration G 100 

20 97 (181) 

 Planomicrobium sp. L-
2 

digestive tract 
of Octopus variabilis 

ammonium sulfate 
precipitation, dialysis and 
enrichment, DEAE-
Sephadex A50 anion-
exchange chromatography, 
and Sephadex G-100 gel 
chromatography 

1.7 61.4 (182) 

Geobacillus 
stearothermophilus B-
1172  

--- Ammonium sulfate 
precipitation + dialysis + 
ion exchange 
chromatography 

13.7 39 (183) 

Bacillus circulans 
MTCC 7906 

Vegetable waste Ammonium sulphate 
precipitation + dialysis + 
DEAE cellulose ion 
exchange chromatography + 
PEG concentrated  

22 40 (20) 

 



Research & Reviews in Biotechnology & Biosciences ISSN No: 2321-8681 

46 
©2020 The author(s). Published by National Press Associates. This  is an open access article under CC-BY License 

(https://creativecommons.org/licenses/by/4.0/), 

Characterization of purified alkaline 
protease for kinetic parameters 

Effect of pH  

Enzymes are amphoteric molecules 
containing a large number of acid and basic 
groups, mainly located on their surface. The 
charges on these groups vary according to 
their acid dissociation constants and pH of 
their environment. This affects the net 
charge on the enzymes and the distribution 
of charges on their exterior surfaces, in 
addition to the reactivity of the catalytically 
active groups. These effects are especially 
important in the neighborhood of the active 
sites, which will overall affect the activity, 
structural stability and solubility of the 
enzyme (184). In general, all currently used 
detergent-compatible proteases are alkaline 
in nature with a high pH optimum, 
therefore they fit into the pH of laundry 
detergents, which is generally in the range 
of 8 to 12. Therefore, most of the 
commercially available subtilisin-type 
proteases are also active in the pH range of 
8-12 (92). A good example for this is the 
well-known detergent enzymes, subtilisin 
Carlsberg and subtilsin Novo or BPN which 
show maximum activity at pH 10.5 (185). 

Alkaline proteases of the genus Bacillus 
show an optimal activity and a good 
stability at high alkaline pH values (186). 
The optimum pH range of Bacillus alkaline 
proteases is generally between pH 9 and 11, 
with a few exceptions of higher pH optima 
of 11.5 (153), 11-12 ( 25, 107) and 12-13 (187).  

Effect of temperature 

The heat stability of enzymes is affected by 
at least two factors, either alone or in 
combination. The first one is the primary 
structure of the enzyme. A high content of 
hydrophobic amino acids in the enzyme 
molecule provides a compact structure, 
which is not denatured easily by a change in 
the external environment. In addition, 
disulfide bridges and other bonds provide a 
high resistance both to heat inactivation and 
chemical denaturation. Secondly, specific 

components such as polysaccharides and 
divalent cations, if any, can stabilize the 
molecule (188). 

Even though there is no firm evidence to 
suggest that thermostable enzymes are 
necessarily derived from thermophilic 
organisms, there is a greater chance of 
finding thermostable proteins from non-
thermophilic bacteria (56). Therefore, a wide 
range of microbial proteases from 
thermophilic species has been extensively 
purified and characterized. These include 
Thermus sp., Desulfurococcus strain Tok12S1 
and Bacillus sp. Among these, alkaline 
proteases derived from alkalophilic bacilli, 
are known to be active and stable in highly 
alkaline conditions. The earliest 
thermophilic and alkalophilic Bacillus sp. 
was B. stearothermophilus strain F1 isolated 
(189), which was stable at 60ºC (190). Further 
studies on microbial alkaline proteases have 
been done in view of their structural-
function relationship and industrial 
applications, as they need stable biocatalysts 
capable of withstanding harsh conditions of 
operation (56). 

Generally alkaline proteases produced from 
alkaliphilic Bacillus are known to be active 
over a wide range of temperature. The 
optimum temperatures of alkaline proteases 
range from 40 to 80ºC. In addition, the 
enzyme from an obligatory alkalophilic 
Bacillus P-2 showed an exceptionally high 
optimum temperature of 90ºC. The protease 
also had good thermostability being stable at 
90ºC for more than 1 h and retained 95 and 
37% of its activity at 99ºC (boiling) and 
121ºC (autoclaving temperature), 
respectively. Bacillus P-2 was the only 
mesophile reported until 2001, which 
produced a proteolytic enzyme that was 
stable even at autoclaving (121ºC) and 
boiling temperatures (135).  

Effect of enzyme and substrate 
concentration 

Enzyme concentration is an important factor 
in determining the rate of reaction. The 
enzyme activity is directly proportional to 
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enzyme concentration at a particular 
substrate concentration. Hence, when all 
enzyme sites are saturated for the substrate, 
there is no further increase in enzyme 
activity even with increase in enzyme 
concentration.  

A number of studies revealed that 
concentration of enzyme and substrate 
dependent on the type and speed of alkaline 
protease producing microorganisms. 
Researchers found 50% protease (of the 
reaction mixture) as the optimum for 
alkaline protease activity in the reaction 
mixture (2.0 ml) containing 0.05 M Tris-HCl 
buffer (pH 7.5), casein and enzyme (1.0%, 
1.0 ml) in case of B. polymyxa B-17 (191). 
Huang et al (192) also revealed that 1.0 ml 
(50%) is optimum for protease activity at 
2.0% casein in Bongsuan-NaoH buffer (pH 
9.8) and temperature of 50°C in B. pumilis. 
Caseinolytic activity was estimated by using 
different enzyme concentrations (0.05-0.5 
ml) in a reaction mixture of 3 ml, 0.1 ml of 
enzyme that constitutes 3.33% of reaction 
mixture produced maximum protease 
activity (173). Similarly, in another report, 
Ahmed et al (177) reported 33.3% protease as 
optimal for alkaline protease acitivity in 
Bacillus sp. GUS1 and B. subtilis, 
respectively. 

Enzymes are natural catalysts that speed up 
the chemical reactions. However, the speed 
of any fastidious reaction being catalysed by 
a particular enzyme can only reach a certain 
maximum value. This rate is known as 
Vmax while, Kmcan define the 
concentration of substrate at which half of 
the maximal velocity (Vmax) is obtained. 
The relationship between rate of reaction 
and concentration of substrate depends on 
the affinity of the enzyme for its substrate 
and is usually expressed as the Km 
(Michaelis constant) of the enzyme. An 
enzyme with low Km has a greater affinity 
for its substrate. An alkaline protease is 
highly substrate specific and exhibits 
maximum activity towards casein as 
substrate (193). Adinarayana et al (154) 

reported that proteases have a high level of 
hydrolytic activity for casein as substrate 
and poor to moderate hydrolysis of BSA and 
egg albumin, respectively. 

Among the different studies on alkaline 
protease kinetics, Mane and Bapat (166) 
reported a Km value of 2.5 mg/ml for 
alkaline protease from B. subtilis NCIM 2713. 
Kumar (153) observed Km and Kcat values 
for alkaline protease of B. pumilis MK6-5 
with synthetic substrates at 37°C and pH 8.0 
as 1.1 mmol l-1 and 624 s-1 for Glu-Gly-Ala-
Phe-pNA and 3.7 mmol l-1 and 826 s-1 for 
Glu-Ala-Ala-Ala-pNA, respectively. The 
kinetic data revealed that small aliphatic and 
aromatic residues were the preferred 
residues at the P1 position. Gupta et al (95) 
reported an alkaline protease producing 
haloalkaliphilic Bacillus sp. that had Km and 
Vmax of 2 mg/ml and 289.8 µg/min, 
respectively. Joo and Chang (119) 
determined the Km (83.9 micromol l-1) and 
Kcat (238.6 s-1) values for alkaline protease 
from a halo-tolerant B. clausii I-52 and Kazan 
et al (169) observed Km (0.655 µM) and Kcat 
(4.21 × 103 min-1) values for B. clausii 
GMBAE 42. Patel et al (24) reported the Km 
and Vmax of an extracellular alkaline 
protease from a novel haloalkaliphilic 
Bacillus sp. (Ve1) as 0.153 g/100 ml and 454 
U/ml, respectively. The kinetic parameters 
of serine alkaline protease from B. pumilus 
CBS (SAPB) was determined (53). The Km, 
Vmax and Kcat values of SAPB for casein 
(natural substrate) were 0.4 mM, 27,160 
U/mg and 18,106 min-1, respectively. Its 
deduced catalytic efficiency (kcat/Km) was 
found to be 45,265 min-1 mM-1, which was 
4.77, 2.73 and 2.11 times higher than those of 
SC, SB 309 and BPN’, respectively. In 
addition, the Km and kcat values of SAPB 
for N-succinyl-L-Ala-Ala-Pro-Phe-p-
nitroanilide (AAPF), as synthetic substrate, 
were 0.3 mM and 44,100 min-1, respectively 
with a deduced Kcat/Km of 147,000  min-1 
mM-1, which was 2.21, 1.88 and 1.68 times 
higher than those of SB 309, SC and BPN’, 
respectively. These results strongly suggest 
that SAPB is the most promising candidate 
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for cleansing power of laundry detergent 
and various other biotechnological 
applications. 

Recently, Deng et al (18) observed the kinetic 
parameters of purified recombinant AprB 
towards different substrates.  Alkaline 
protease enzyme of Bacillus sp. B001 
indicated its maximum catalytic velocities 
(Vmax) towards casein (natural substrate), 
azocasein (modified substrate) and AAPF 
(synthesic peptide substrate) of 12.54, 102.54 
and 242.09×103 U/mg respectively with a 
substrate preference of azocasin > casein > 
AAPF. The deduced Kcat/Km (catalytic 
efficiency) values of AprB for casein, 
azocasein and AAPF were found to be 57.42, 
906.31 and 151.01×103 min-1 mM-1 
respectively. These high catalytic efficiencies 
of AprB strongly indicate that it is a 
potential candidate for use as a laundry 
additive and other commercial applications 
(194). 

The protease from B. circulans showed Km 
of 0.597 mg ml-1 and Vmax of 13825 µM min-

1 towards casein as a substrate at 70°C (195). 
The Km, Kcat values of B.licheniformis MP1 
purified alkaline protease were 0.53 mM and 
12.7×103 min-1 respectively using casein as 
substrate (176). Using casein as substrate, 
the alkaline protease enzyme from B. subtilis 
showed maximum activity (Vmax) of 148 
U/ml with its corresponding Km value of 58 
μM (177). Furthermore, kinetic constants 
(Km and Vmax) for extracellular purified 
alkaline protease of B. licheniformis NCIM-
2042 was determined (39) using Lineweaver-
Burk plot as 0.01078 g/100 ml and 182.9 U, 
respectively.  

Hence, there is a large variation in Km and 
Vmax values, revealed that optimum 
concentration of substrate is species specific. 

Effect of metal ions and inhibitors on the 
alkaline protease activity 

Various kind of metal ions, reagents and 
osmolytes have been reported to influence 
the enzyme activity of proteases, their pH 
and temperature stability. Alkaline 

proteases isolated from different fungal and 
bacterial sources behave differently in the 
presence of mono or divalent ions. Cu2+, 
Co2+ have been found to enhance the 
enzymatic activity of alkaline protease 
isolated from B. licheniformis (196). It was 
found that Hg2+, Zn2+ and Fe3+ ions inhibit 
the proteolytic activity of alkaline protease 
of Bacillus sp. JB99 (47) whereas Ca2+, Mn2+, 
Cu2+, Co2+ and Mg2+ had stimulating effect 
on the enzyme activity. Ca2+ ion dependent 
activity is thought to be attributed to its 
involvement in stabilization of the protease 
molecular structure derived from Bacillus sp. 
(60, 174). 

In case of alkaline protease of Bacillus sp. 
RGR 14, a two-fold enhancement in protease 
activity was observed in the presence of 
Mn2+ (1mM), however, the enzyme was 
strongly inhibited up to 90% in the presence 
of 10 mM Hg2+ and Cu2+ (173). Many 
alkaline proteases are reported to be 
inhibited by Hg2+ and Ag+ (26). Fe2+ was 
found to be the most effective stimulator 
while Cu2+ was least effective for the 
alkaline protease of Bacillus sp. (197). The 
activity of protease DHAP of B. pumilus was 
enhanced by Ca2+, Mg2+ and Na2+ and 
inhibited by Cu2+ and Zn2+ (192). Ca2+, Mg2+ 
and Mn2+ ions positively regulated the 
enzyme activity in B. circulans (195) and B. 
alcalophilus TCCC11004 (102). It is believed 
that these cations protect the enzyme against 
thermal denaturation and play a role in 
maintaining the active conformation of the 
enzyme at higher temperatures. 

Most of the fungal and bacterial alkaline 
proteases have been found to be serine 
proteases as these are inhibited by PMSF 
and DFP, which sulfonated the essential 
serine residue in the active site and resulted 
in the complete loss of its activity 
(102,154,172). Some of these serine proteases 
have been found to be metal ions dependent 
as these are inhibited by certain metal 
chelating agents such as EDTA etc.  
(173,193). Contrary to these reports, a few 
alkaline proteases have not been found to be 
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inhibited by both or either PMSF or EDTA 
(25, 31,177).  

Scale Up Studies of Alkaline Protease 
Production 

In order to scale up protease production 
from microorganisms, biochemical and 
process engineers use several strategies to 
obtain high yields of proteases. Controlled 
batch and fed batch fermentation using 
simultaneous control of glucose, ammonium 
ion concentration, oxygen tension, pH and 
salt availability (93) and chemostat cultures 
have been successfully employed for 
improving protease production by a number 
of microorganisms. 

Among the different case studies, B. subtilis 
from tannery waste was isolated (93), 
produced alkaline protease (pH 8.5) in a 
stirred tank fermenter at 37°C with the 
dissolved oxygen tension at 40% air 
saturation. Alkaline protease yield from B. 
mojavensis was improved upto 4-fold under 
semi batch and fed batch operations by 
separating biomass and protease production 
phases using intermittent de-repression and 
induction during the growth of organism 
(94). Moreover, an enhanced production of 
alkaline protease by an engineered strain 
BA071 in a 5L fermentor was reported. It 
was found that the maximum activity of 
alkaline protease reached 24,480 U/ml in 40 
hours of fermentation by combination of 
enhancing aeration and regulating the 
agitation rate (167). Kumar et al (198) found 
a 5-fold increase in alkaline protease yields 
(31899 U/ml) at a lower production time of 
45h, aeration of 1vvm and agitation of 400 
rev/min at 37°C using arrow root starch 
casein medium (pH 10.2). Besides the 
improved yield, time of production was also 
reduced by 27 hours. Earlier, protease 
production in bioreactor at high agitation 
rate of 360-600 rpm have also been reported 
by Moon et al (86) in B. firmus. Alkaline 
protease production by a marine 
haloalkalophilic B. clausii was optimized in a 
bioreactor. The isolate produced maximum 
protease yields (15000 U/ml) under 

submerged fermentation conditions at 42°C 
for 40 hours with aeration of 1.5 vvm and 
agitation of 400 rev/min. 

Similarly, Haq and Mukhtar (199) used a 
7.5-L bioreactor for alkaline protease 
production (pH 9.0, 35°C, 175 rpm) by B. 
subtilis and Saurabh et al (139) employed a 
10 L fermentor (Bio-flow IV, NBS, USA) for 
alkaline protease production (pH 7.0, 37°C, 
350 rpm, 0.5 0.5 vvm) by Bacillus sp. and 
reported enzyme production of 3208 U/ml 
in 18 h. Thereafter, a decline in the protease 
production was observed in the bioreactor. 
Similar cessation in protease production has 
been reported (86, 92), once a maximum 
amount of the enzyme is produced during 
the run. Although, there are several theories 
such as autoproteolysis (200) and protease 
degradation by some proteases present on 
the cell surface on nitrogen starved cells 
(134, 155), the exact mechanism is yet not 
known. Laxman et al (81) reported the 
production of alkaline protease from 
Condibolous coronatus  in 100 L fermenter 
with soyabean as optimum in concentrations 
of 2-3% as best inducer with diammonium 
hydrogen phosphate, casamino acids and 
Hi-media peptone gave activities 
comparable to yeast extract. The ammonium 
sulphate saturated enzyme was found to be 
stable upto two years. Researchers (139) 
revealed maximum of 3208 U/mL of 
protease from Bacillus was produced in 18 h 
in a 10L bioreactor. The enzyme has 
temperature and pH optima of 60°C and 9.5, 
respectively. However, the temperature 
stability range is from 20-90 °C and pH 
stability range is from 6.0–12.0. The protease 
was completely inhibited by 
PhenylMethylSulfonyl Fluoride (PMSF) and 
Diodopropyl FluoroPhosphate (DFP), with 
little increase (10-15%) in the production of 
upon addition of Ca2+ and Mg2+. Irfan et al 
(201) showed that Bacillus subtilis M-21 was 
used for the production of alkaline protease 
in 2 L jar fermenter with working volume 
1.5 L. Soybean meal was used as choice of 
substrate due to its high nitrogen contents. 
The effect of different process parameters 
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(pH, temperature, agitation and aeration) 
and their relationship with each other was 
studied during fermentation process. 
Highest protease production (896.5 ± 1.5 
PU/ml) was obtained at optimum pH 10, 
temperature 37°C, agitation rate 300 rpm 
and at aeration 2 ml/min. The maximum 
protease activity was obtained from P. 
aeruginosa MCM B-327 with soybean meal 
1%, tryptone 1%, initial medium pH 7, 
agitation rate 250 rpm, aeration rate 0.75 
vvm and fermentation temperature 30 °C, 
under submerged fermentation conditions 
(SmF). The protease productivity at 10 and 
120L fermenters was found to be 16,021 and 
9,975 UL-1h-1 respectively (202). 

Conclusion 

In a moderately small time, recent 
biotechnological approaches have 
developed significantly from laboratory 
inquisitiveness towards commercialization. 
Recent trends in microbiological ideas and 
biotechnology have fashioned an 
encouraging niche for the advancement of 
proteases and would sustain their 
applications to give a sustainable 
environment for the improvement of 
mankind. Alkaline protease carries vast 
potential in diverse industries such as 
detergent, leather, food and pharmaceutical 
industry. In the present scenario, it’s need of 
an hour to explore novel microorganisms for 
enzyme production which should have 
adaptable capacity to accomplish demand of 
industry. For industrial uses, enzyme 
production requires: isolation and 
characterization of novel microbes (strains) 
by utilizing cheaper carbon and nitrogen 
sources. Furthermore, the enzyme (alkaline 
protease) activity is influenced by various 
environmental factors, for instance pH, 
Temperature and ionic strength of the 
production medium. Besides, keeping in 
mind the stringent conditions of industrial 
processes, the genetic and protein 
engineering could participate an essential 
role for modifying the enzyme’s properties 
in order to produce enzymes at large scale. 
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