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ABSTRACT 

Mycorrhizal fungi play a pivotal role in plant nutrition and stress 

tolerance, forming intricate mutualistic relationships with 

approximately 80% of terrestrial plant species. Recent advances in 

molecular and imaging techniques have shed new light on the 

dynamic role of these fungi in facilitating nutrient acquisition, 

particularly for immobile elements like phosphorus and 

micronutrients. Transcriptomic analyses have revealed the 

upregulation of specific phosphate transporter genes in plants 

colonized by arbuscular mycorrhizal fungi (AMF), while isotopic 

labelling studies have quantified the bidirectional transfer of nutrients 

and carbon in mycorrhizal systems. Beyond their role in nutrition, 

mycorrhizal fungi have been empirically shown to enhance plant 

tolerance to various abiotic stresses, including drought, salinity, and 

metal toxicity, by employing physiological mechanisms that enhance 

water absorption, facilitate osmotic adjustment, and regulate 

antioxidant systems. The production of glomalin by AMF also 

contributes to soil aggregate formation and long-term carbon storage, 

improving soil health and fertility. The incorporation of mycorrhizal 

fungi into agricultural production systems presents a viable 

alternative to chemical-intensive practices, as meta-analyses have 

demonstrated their ability to enhance nutrient use efficiency, reduce 

dependency on synthetic fertilizers, and increase yield across diverse 

cropping systems. This review provides a critical analysis of the 

multifaceted contributions of mycorrhizal fungi to plant nutrient 

dynamics, drawing on recent empirical evidence and contextualizing 

these insights within the broader framework of current environmental 

and agronomic challenges. The review aims to underscore the pivotal 

role of mycorrhizal fungi as integral components of the plant-soil 

interface and their potential to promote sustainable agricultural 

practices. 

Keywords: Mycorrhizal Fungi, Nutrient Acquisition, Plant Nutrition, 
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1. INTRODUCTION 

Efficient acquisition and utilization of nutrients 

are essential for plant growth, physiological 

performance, and yield potential. Key 

macronutrients, such as nitrogen, phosphorus, 

and potassium, as well as critical micronutrients 

Article History 

 

Received: 23/07/2025 

Accepted: 01/08/2025 

 

 

 

 

 

 

 

 

Article ID: RRBB/01_2025 

 

 

 

 

 

 

Corresponding Author: 

E-Mail: 

asheershwal@gmail.com, 

vanisharma1988@gmail.com 

http://www.biotechjournal.in/
https://doi.org/10.5281/zenodo.16681038
https://doi.org/10.5281/zenodo.16681038


Research & Reviews in Biotechnology & Biosciences        ISSN No: 2321-8681 

Website: www.biotechjournal.in                           Research Paper 

Volume: 12, Issue: 2, Year: 2025                  PP: 1-24 

DOI:  https://doi.org/10.5281/zenodo.16681038                                    Peer Reviewed Refereed Journal 

National Press Associates. (2025). ADVANCES IN UNDERSTANDING THE ROLE OF MYCORRHIZAL 

FUNGI IN PLANT NUTRITION AND STRESS TOLERANCE. Research & Reviews in Biotechnology & 

Biosciences, 12(2), 1–24.   https://doi.org/10.5281/zenodo.16681038                                                                 2 

like zinc, iron, and manganese, are fundamental 

for enzyme activity, photosynthesis, and overall 

metabolic functioning (Hawkesford et al., 2011). 

However, the bioavailability of numerous 

essential nutrients in natural and agricultural 

soils is often restricted due to their sequestration 

in non-bioavailable forms, limited solubility, or 

competition with other ions. For instance, 

phosphorus frequently forms insoluble 

complexes with calcium, iron, or aluminum in 

soils, thereby diminishing its accessibility to 

plants despite its abundant presence in the 

environment (Prasad & Shivay, 2021). 

To address these limitations, plants have 

established intricate mutualistic relationships 

with a diverse array of soil microorganisms. 

Among these, mycorrhizal fungi constitute one 

of the most ecologically and evolutionarily 

successful mutualistic associations. Arbuscular 

mycorrhizal fungi (AMF), belonging to the 

phylum Glomeromycota, form associations with 

approximately 80% of terrestrial plant species, 

including most agriculturally important crops 

(Aryal & Xu, 2001). Mycorrhizal fungi permeate 

the rhizosphere and invasively colonize the root 

cortical cells, whereupon they develop 

specialized structures known as arbuscules that 

facilitate nutrient exchange. In return for 

photosynthetically derived carbon from the host, 

mycorrhizal hyphae permeate the surrounding 

soil, greatly enhancing the absorptive surface 

area accessible for nutrient uptake, particularly 

for immobile elements like phosphorus and 

micronutrients (Garg et al., 2006). 

Recent advances in molecular and imaging 

techniques have shed new light on the dynamic 

role of mycorrhizal fungi in plant nutrition. For 

example, transcriptomic analyses have revealed 

the upregulation of specific phosphate transporter 

genes in plants colonized by AMF, indicating a 

direct genetic and physiological response to 

symbiosis (Facelli et al., 2009). Isotopic labeling 

studies have also confirmed the bidirectional 

transfer of nutrients and carbon in mycorrhizal 

systems, quantifying the extent to which these 

fungi can mobilize soil-bound P and Zn and 

deliver them to host plants under both field and 

controlled conditions (Shi et al., 2023). 

Beyond their role in facilitating nutrient 

acquisition, mycorrhizal fungi have been 

empirically shown to serve a pivotal role in 

enhancing plant health and resilience. Extensive 

research has substantiated their capacity to 

improve plant tolerance to various abiotic 

stresses, including drought, salinity, and metal 

toxicity (Kumar et al., 2014; Lanfranco et al., 

2016). By employing physiological mechanisms 

that enhance water absorption, facilitate osmotic 

adjustment, and regulate antioxidant systems, 

arbuscular mycorrhizal fungi can mitigate the 

deleterious effects of stress and maintain plant 

productivity under suboptimal growing 

environments (Malhi et al., 2020; Mitra et al., 

2021). Furthermore, the production and release 

of glomalin, a glycoprotein synthesized by 

arbuscular mycorrhizal fungi, enhances soil 

aggregate formation and promotes long-term 

carbon storage, thereby improving soil health and 

fertility in a sustained manner (Nautiyal et al., 

2019). 

The incorporation of mycorrhizal fungi into 

agricultural production systems presents a viable 

alternative to chemical-intensive practices, as 

global agriculture strives to achieve greater 

sustainability and reduced environmental impact. 

Notably, several recent meta-analyses have 

demonstrated that AMF inoculation can 

significantly enhance nutrient use efficiency, 

reduce dependency on synthetic fertilizers, and 

increase yield across diverse cropping systems 

and agroecological zones (Schaefer et al., 2021; 

Sun & Shahrajabian, 2023). These findings align 

with the principles of regenerative agriculture 

and agroecology, where fostering beneficial soil-

plant-microbe interactions is central to achieving 

productivity, resilience, and ecological balance 

(Jayasinghe et al., 2023). 

This review provides a critical analysis of the 

multifaceted contributions of mycorrhizal fungi 
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to plant nutrient dynamics, drawing on recent 

empirical evidence from diverse research 

settings. Particular emphasis is placed on 

elucidating the physiological mechanisms 

underlying nutrient acquisition, symbiotic 

signaling, and the potential of mycorrhizal 

technologies to promote sustainable agricultural 

practices (Wahab et al., 2024). By 

contextualizing these insights within the broader 

framework of current environmental and 

agronomic challenges, the review aims to 

underscore the pivotal role of mycorrhizal fungi 

as integral components of the plant-soil interface 

(Chaudhary et al., 2025). 

2. TYPES OF MYCORRHIZAL 

ASSOCIATIONS 

Mycorrhizal fungi are broadly categorized based 

on their morphological features and the nature of 

their association with plant roots. These 

symbiotic relationships, though universally 

centered around nutrient exchange, differ 

significantly in terms of host range, structural 

adaptations, and ecological distribution. The four 

principal types are arbuscular mycorrhizae, 

ectomycorrhizae, ericoid mycorrhizae, and 

orchid mycorrhizae (Powell & Rillig, 2018) . 

Arbuscular mycorrhizal fungi (AMF), belonging 

to the phylum Glomeromycota, represent the 

most widespread and ancient form of 

mycorrhizal association. They colonize the root 

cortex of a vast majority of terrestrial plants, 

particularly herbaceous crops, cereals, and 

legumes. Within the root tissue, AMF develop 

extensively branched structures within the host 

plant's root cortical cells, known as arbuscules, 

which serve as the principal sites for the 

exchange of nutrients between the fungus and the 

plant. In some cases, vesicles are also formed, 

serving as storage organs (Willis et al., 2013). 

The extraradical mycelium of AMF significantly 

increases the overall absorptive capacity of the 

root system, thereby enhancing the uptake of 

immobile nutrients, especially phosphorus, and 

various micronutrients from the surrounding soil 

matrix . Despite their ubiquity, AMF exhibit 

relatively low host specificity, allowing them to 

form functional associations with a broad 

spectrum of plant species across diverse 

ecosystems (Alrajhi et al., 2024). 

Ectomycorrhizal fungi (EMF), in contrast, are 

predominantly associated with woody plants 

such as conifers, oaks, and eucalypts. Unlike 

AMF, EMF do not penetrate root cortical cells. 

Instead, they form a dense hyphal sheath, or 

mantle, around the root tip, from which hyphae 

extend into the surrounding soil and between 

cortical cells to form a structure known as the 

Hartig net. This interface enables the transfer of 

nutrients without breaching cell membranes, a 

key difference from the intracellular arbuscules 

of AMF (Cahanovitc et al., 2022). 

Ectomycorrhizal associations are typically more 

specialized, with certain fungal taxa forming 

partnerships with specific host genera or 

families. These fungi play a critical role in 

nutrient cycling within forest ecosystems, 

particularly in facilitating the acquisition of 

nitrogen and organic-bound phosphorus under 

nutrient-limited conditions (Van Der Heijden et 

al., 2015). 

Ericoid mycorrhizae, primarily found in 

members of the Ericaceae family such as 

heathers and blueberries, are adapted to highly 

acidic and nutrient-poor soils (Smith & Read, 

2008). The fungal partners in this association, 

typically ascomycetes, form loose coils within 

the epidermal cells of fine hair roots. Unlike 

AMF and EMF, ericoid mycorrhizal fungi 

possess saprotrophic capabilities, allowing them 

to decompose complex organic matter and 

liberate nutrients otherwise inaccessible to the 

host plant (Mitchell & Gibson, 2006; Wei et al., 

2022). This functional trait is particularly 

important in environments where mineral 

nutrients are tightly bound in organic forms. 

Orchid mycorrhizae are a distinct and highly 

specialized type of association observed 

exclusively in Orchidaceae. Orchids rely on 
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these fungi, often from the Rhizoctonia complex, 

for seed germination and early seedling 

development, as orchid seeds lack sufficient 

nutrient reserves for autonomous growth. The 

fungal hyphae invade the cells of the developing 

protocorms and form pelotons, coiled hyphal 

structures that are periodically digested by the 

host to derive nutrients (Van Der Heijden et al., 

2015) . While many orchids transition to 

photosynthesis as they mature, some remain fully 

or partially mycoheterotrophic throughout their 

life cycle, relying entirely on fungal partners for 

carbon and nutrients (Hossain, 2022). 

Comparative studies of these mycorrhizal types 

reveal distinct structural and functional 

adaptations that reflect the evolutionary 

trajectories and ecological niches of their host 

plants. These distinctions are summarized in 

Table 1, which outlines key features of the major 

mycorrhizal associations relevant to both natural 

and agricultural systems. While AMF and EMF 

dominate agronomic and forest ecosystems 

respectively, ericoid and orchid mycorrhizae 

illustrate the specialization required for survival 

in nutrient-deficient or physiologically extreme 

habitats. Understanding the diversity of these 

associations is crucial for harnessing their 

potential in ecological restoration, conservation 

biology, and sustainable agriculture (Verbruggen 

& Toby Kiers, 2010). 

 

Table 1. Comparison of Major Types of Mycorrhizal Associations 

Type of 

Mycorrhiza 

Fungal Taxa Host 

Range 

Structure Nutrient 

Uptake 

Ecological 

Role 

Referenc

e 

Arbuscular 

Mycorrhiza 

(AMF) 

Glomeromycota 

(Rhizophagus, 

Funneliformis) 

Broad 

(80% of 

vascular 

plants, 

mainly 

herbaceo

us) 

Arbuscules

, vesicles, 

extra-

radical 

hyphae 

Enhanced 

P, Zn, Cu 

uptake; 

drought 

tolerance 

Common 

in 

croplands; 

essential 

for nutrient 

efficiency 

(Lewis, 

2016) 

Ectomycorrhi

za (ECM) 

Basidiomycota, 

Ascomycota 

(Laccaria, 

Pisolithus) 

Woody 

trees 

(e.g., 

pine, 

oak) 

Mantle, 

Hartig net 

N, P, 

organic 

nutrient 

uptake 

Dominant 

in forest 

ecosystems 

(Lehman

n et al., 

2016) 

Ericoid 

Mycorrhiza 

Ascomycota 

(Hymenoscyphu

s) 

Ericaceae 

(e.g., 

blueberry

) 

Hyphal 

coils in 

root 

epidermis 

Organic 

N, P from 

acidic 

soils 

Found in 

heathlands 

and 

peatlands 

(Ward et 

al., 2022) 

Orchid 

Mycorrhiza 

Basidiomycota 

(Tulasnella) 

Orchidac

eae 

Intracellula

r pelotons 

Carbon 

for 

germinatio

n 

Critical for 

orchid 

establishme

nt 

(Hossain, 

2022) 
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3. MECHANISMS OF NUTRIENT UPTAKE 

Mycorrhizal fungi significantly enhance plant 

nutrient uptake through a variety of direct and 

indirect mechanisms that extend beyond the 

physical root-soil interface. By establishing an 

expansive hyphal network within the 

rhizosphere, these fungi access nutrient pools 

otherwise unavailable to plant roots alone 

(Wahab et al., 2023). This network acts not only 

as an extension of the root system but also as a 

dynamic biochemical interface that modifies the 

soil environment, solubilizes nutrients, and 

facilitates their translocation to the host plant 

(Saeed et al., 2021). 

The enhancement of phosphorus (P) uptake 

remains the most widely recognized benefit of 

mycorrhizal symbiosis, particularly in the case of 

AMF. Phosphorus is a relatively immobile 

nutrient in soils due to its tendency to form 

insoluble complexes with calcium, iron, and 

aluminum. The extraradical hyphae of AMF 

scavenge phosphorus from beyond the root 

depletion zone and transport it to the plant via 

specialized phosphate transporters induced 

during colonization (Miyasaka & Habte, 2001). 

Molecular studies have identified the 

upregulation of PT4 and PT11 transporters in 

AMF-colonized plants, underscoring the 

integration of fungal and plant nutrient 

pathways(Banasiak et al., 2021; Chiu & 

Paszkowski, 2019) . Moreover, recent isotopic 

tracing experiments have quantified the 

proportion of phosphorus acquired via the 

mycorrhizal pathway, often exceeding 60% of 

total plant P uptake under low-P conditions 

(Watts-Williams, 2022). 

Beyond phosphorus, AMF also enhance the 

acquisition of essential micronutrients such as 

zinc (Zn), copper (Cu), and manganese (Mn), 

which are critical cofactors in enzymatic 

processes and redox reactions. These elements, 

though required in trace amounts, often exist in 

unavailable forms under alkaline or heavily 

weathered soil conditions. The acidification of 

the rhizosphere by AMF hyphae, coupled with 

the secretion of low-molecular-weight organic 

acids and siderophores, plays a central role in 

mobilizing these micronutrients (Mishra et al., 

2023). Empirical studies have shown substantial 

enhancements in Zn and Cu concentrations in the 

tissues of mycorrhizal plants, especially in 

calcareous and degraded soils (Lehmann et al., 

2014). 

The contribution of mycorrhizal fungi to nitrogen 

(N) acquisition is more complex and often 

context-dependent. While AMF do not possess 

nitrogen-fixing capabilities, they enhance 

nitrogen uptake by accessing organic and 

inorganic N forms from microenvironments 

beyond the root’s immediate influence. In 

legume systems, a synergistic interaction is often 

observed between AMF and rhizobia, whereby 

the mycorrhizal symbiosis supports more 

efficient biological nitrogen fixation by 

improving phosphorus nutrition, which is 

essential for the energetically demanding process 

of nitrogenase activity (Reynolds et al., 2005). 

Several studies have also reported the 

involvement of ectomycorrhizal fungi in the 

direct uptake and mineralization of organic 

nitrogen compounds in forest soils, further 

highlighting the diversity of nitrogen acquisition 

strategies across mycorrhizal types (Zhang et al., 

2023). 

In addition to nutrient uptake, mycorrhizal fungi 

play a pivotal role in enhancing plant water 

relations, thereby indirectly supporting nutrient 

transport and overall plant vigor under drought 

conditions. The extensive hyphal network 

functions as a hydraulic bridge, facilitating water 

uptake from micropores in the soil matrix that 

are otherwise inaccessible to roots (Aragon et al., 

2025). Furthermore, AMF colonization has been 

associated with increased root hydraulic 

conductivity, enhanced accumulation of 

osmoprotectants, and modulation of aquaporin 

expression—mechanisms that collectively 

improve plant drought tolerance. These 

adaptations collectively contribute to improved 
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drought resilience and nutrient transport 

efficiency under water-limited conditions, as 

illustrated in Figure 1. These physiological 

benefits are particularly valuable in arid and 

semi-arid agricultural systems where water 

availability is a primary constraint to 

productivity (Cheng et al., 2021). 

 

 

Figure 1: Schematic overview of how arbuscular mycorrhizal fungi (AMF) improve plant 

resistance to abiotic stress. 

Collectively, these mechanisms underscorethe 

pivotal function of mycorrhizal fungi in 

facilitating plant-soil nutrient interactions. Their 

ability to improve the acquisition of both macro- 

and micronutrients, along with their indirect 

influence on nitrogen fixation and water stress 

mitigation, makes them indispensable partners in 

nutrient-efficient and climate-resilient 

agricultural systems (Tang et al., 2022). A 

comparative overview of these nutrient 

acquisition pathways is presented in Table 2, 

summarizing the direct and indirect mechanisms 

through which mycorrhizal fungi enhance plant 

nutrition. 
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Table 2. Mycorrhizal Contributions to Plant Nutrient and Water Uptake 

Nutrient/Element Mycorrhizal Role Mechanism of 

Uptake 

Notable Findings Reference 

Phosphorus (P) Primary uptake via 

AMF 

Hyphal transport Up to 80% of P 

from AMF in low-

P soils 

(Etesami et 

al., 2021) 

Nitrogen (N) Indirect 

enhancement with 

N-fixing bacteria 

AMF-assisted 

organic N 

mineralization 

Improved N 

assimilation in 

cereals and 

legumes 

(Soumaré 

et al., 2020) 

Zinc (Zn) Increased root and 

shoot Zn 

Chelation and 

transport by fungal 

hyphae 

Higher Zn uptake 

in wheat and 

maize 

(Saboor et 

al., 2021) 

Copper (Cu) Enhanced 

bioavailability in 

low-Cu soils 

Absorption via 

hyphal surfaces 

Elevated Cu 

uptake in citrus, 

vineyards 

(Betancur-

Agudelo et 

al., 2023) 

Manganese (Mn) Facilitated 

absorption in 

deficient soils 

Improved root-soil 

interface 

Mn uptake 

enhanced in 

legumes 

(Khoshru et 

al., 2023) 

Water Improved drought 

resistance 

Hyphal penetration 

into micropores 

Greater water use 

efficiency under 

stress 

(Tang et al., 

2022) 

 

4. INFLUENCE ON PLANT GROWTH AND 

YIELD 

The contribution of mycorrhizal fungi to plant 

growth extends far beyond nutrient acquisition, 

manifesting in tangible improvements in biomass 

accumulation, physiological performance, and 

crop productivity (Begum et al., 2019). 

Numerous researches have provided substantial 

evidence for the positive effects of mycorrhizal 

colonization on plant growth metrics across a 

diverse array of agricultural and horticultural 

species. These effects are particularly 

pronounced under suboptimal nutrient 

conditions, where mycorrhizal associations 

compensate for limited resource availability and 

reduce the dependency on external inputs 

(Bortolot et al., 2024). 

Controlled experiments and field trials have 

consistently demonstrated that mycorrhizal 

inoculation leads to significant increases in shoot 

and root biomass, leaf area, and total chlorophyll 

content (Jabborova et al., 2021). For instance, in 

phosphorus-deficient soils, inoculated maize 

(Zea mays) plants have shown biomass increases 

ranging from 20% to 80%, depending on fungal 

species, soil type, and climatic conditions. 

Similarly, in wheat (Triticum aestivum), AMF 

colonization has been linked to enhanced 

tillering, spike formation, and grain yield, even 

in high-input systems (Bouzeriba et al., 2021). In 

legume crops such as soybean (Glycine max) and 

chickpea (Cicer arietinum), dual inoculation with 

AMF and rhizobia has been found to 

significantly improve both nodulation and 

nitrogen fixation, translating into increased pod 

number, seed weight, and overall yield (Meng et 

al., 2015). 

The synergistic association between mycorrhizal 

fungi and other beneficial soil microbes further 

amplifies their growth-promoting effects. In 

particular, co-inoculation with plant growth-

promoting rhizobacteria (PGPR) has shown 
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promise in enhancing nutrient use efficiency and 

stimulating phytohormone production 

(Ramasamy et al., 2011). Certain PGPR strains, 

such as Pseudomonas fluorescens and Bacillus 

subtilis, produce indole-3-acetic acid (IAA), 

siderophores, and enzymes that modulate root. 

architecture, thereby improving the root's 

capacity to engage in mycorrhizal colonization. 

Figure 2 illustrates a diagrammatic representation 

of the various mycorrhizal functions in 

regulating ecosystem processes and promoting 

plant growth, especially under abiotic stress 

conditions. Studies have shown that combined 

AMF–PGPR inoculation in crops like tomato and 

cucumber can result in a synergistic increase in 

nutrient uptake, antioxidant enzyme activity, and 

resistance to pathogens and abiotic stress (Khoso 

et al., 2024). 

 

 

Figure 2: A diagrammatic illustration of multifaceted roles of mycorrhizal fungi in regulating 

diverse processes in the ecosystem and plant growth promotion under abiotic stress 

Recent field-level meta-analyses have further 

confirmed the yield-enhancing potential of AMF 

under diverse agroecological conditions. A global 

synthesis of over 100 peer-reviewed studies 

reported an average increase of 23% in crop 

yield due to AMF inoculation, with the greatest 

responses observed in legumes and cereals 

cultivated in nutrient-poor or drought-prone soils 

(Wu et al., 2022). Moreover, the benefits of 

mycorrhizal associations are increasingly being 

recognized in conservation agriculture and 

organic farming systems, where reliance on 

biological inputs is paramount. In long-term 

cropping trials, continuous AMF presence has 

been correlated with cumulative gains in soil 

organic matter, microbial biomass, and yield 

stability across seasons (Kozjek et al., 2021). 

In maize-based intercropping systems, AMF 

have been shown to facilitate resource 

partitioning and improve nitrogen and 

phosphorus uptake efficiency, especially when 

combined with low levels of organic or mineral 

fertilizers (Xue et al., 2024). Similar findings 

have been observed in rice-wheat rotation 

systems, where AMF colonization of residual 
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roots during the off-season supports early 

establishment and nutrient uptake in the 

succeeding crop (Kuila & Ghosh, 2022). 

Collectively, these findings highlight the capacity 

of mycorrhizal fungi not only to enhance plant 

nutrient status but also to translate these 

improvements into measurable gains in growth 

and yield. Their interactions with other soil 

microbiota further reinforce their ecological 

importance and underscore the value of 

integrating mycorrhizal technologies into holistic 

crop management strategies (Khaliq et al., 2022). 

Table 3 summarizes representative studies 

documenting the effects of mycorrhizal 

inoculation on growth and yield parameters in 

major crops, illustrating both the magnitude and 

variability of responses under different 

environmental and management conditions. 

 

Table 3. Impact of Mycorrhizal Inoculation on Agronomic Performance and Yield Components 

in Crops 

Crop Observed Benefits Study Highlights Reference 

Wheat Increased grain yield and 

nutrient efficiency 

Yield gains under water stress 

with AMF 

(Abdelaal et al., 

2024) 

Maize Better root development and P 

uptake 

20–25% yield increase in field 

trials 

(Koech et al., 

2024) 

Soybean Improved nodulation and 

protein content 

Synergism with rhizobia 

enhances N2 fixation 

(Meng et al., 

2015) 

Tomato Improved fruit quality and 

lycopene levels 

Enhanced antioxidant profile 

with AMF 

(Ganugi et al., 

2023) 

Rice Higher tillering and water-use 

efficiency 

Reduced lodging and drought 

impact 

(Chareesri et 

al., 2020) 
 

5. SOIL HEALTH AND ECOSYSTEM 

BENEFITS 

Beyond their role in plant nutrition, mycorrhizal 

fungi contribute significantly to the maintenance 

and enhancement of soil health and ecosystem 

stability. Their presence and activity influence 

the physical, chemical, and biological properties 

of soil, thereby supporting agroecosystem 

resilience and sustainability. As concerns about 

soil degradation, nutrient runoff, and declining 

biodiversity intensify, the ecological functions of 

mycorrhizal fungi have gained renewed scientific 

and agronomic interest (Fall et al., 2022). 

One of the most distinctive contributions of 

arbuscular mycorrhizal fungi (AMF) to soil 

structure is through the production of glomalin-

related soil proteins (GRSPs). Glomalin is a 

hydrophobic glycoprotein secreted by AMF 

hyphae that acts as a binding agent, stabilizing 

soil aggregates and improving porosity and water 

retention (Yang et al., 2024). Research has shown 

that glomalin content is positively correlated 

with soil aggregate stability, organic carbon 

levels, and reduced erosion potential. For 

instance, in long-term cropping systems, AMF-

colonized soils exhibited 30–40% greater 

aggregate stability and 20% higher water 

infiltration rates compared to non-mycorrhizal 

controls (Nautiyal et al., 2019). 

In addition to physical improvements, 

mycorrhizal fungi shape the soil microbial 

community structure by influencing rhizosphere 

interactions and resource availability. The 

hyphosphere—a niche surrounding mycorrhizal 

hyphae—serves as a hotspot of microbial activity 

and diversity. AMF interactions with free-living 

nitrogen-fixers, phosphate-solubilizing bacteria, 

and other beneficial microorganisms have been 
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documented to enhance nutrient cycling and 

suppress soil-borne pathogens (Vieira et al., 

2025). Metagenomic analyses have revealed that 

AMF colonization alters the expression of 

microbial genes involved in nitrogen 

metabolism, organic matter decomposition, and 

plant hormone synthesis, suggesting a broader 

ecosystem engineering role. Such microbial 

shifts are especially beneficial in degraded or 

marginal soils, where microbial diversity is 

typically low and nutrient turnover is inefficient 

(Samantaray et al., 2024). 

The cumulative impact of mycorrhizal fungi on 

soil health has profound implications for 

reducing dependence on chemical fertilizers. 

Excessive fertilizer use not only disrupts native 

microbial communities but also contributes to 

nutrient leaching, greenhouse gas emissions, and 

water eutrophication. Mycorrhizal symbioses 

offer a biologically mediated nutrient delivery 

system that enhances plant access to existing soil 

reserves and reduces the need for exogenous 

inputs (Sosa-Hernández et al., 2019). Numerous 

studies have demonstrated that crops inoculated 

with AMF can achieve comparable or superior 

yields with significantly lower phosphorus and 

nitrogen application rates. In wheat and maize, 

for example, AMF inoculation allowed for a 30–

50% reduction in phosphorus fertilizer use 

without compromising yield or grain quality 

(Beslemes et al., 2023). 

Moreover, the long-term integration of 

mycorrhizal inoculants into cropping systems 

contributes to carbon sequestration and climate 

regulation. Glomalin production, combined with 

increased root biomass and microbial turnover, 

enhances soil carbon inputs and stabilization. 

Field studies across multiple agroclimatic zones 

have shown that AMF-rich soils exhibit higher 

microbial biomass carbon and reduced CO₂ 

fluxes, especially under conservation tillage and 

organic farming practices (Pelosi et al., 2024). 

In sum, mycorrhizal fungi serve as keystone 

organisms in the soil ecosystem, providing 

multifunctional benefits that align with the goals 

of ecological intensification and regenerative 

agriculture. Their ability to enhance soil 

structure, foster beneficial microbial consortia, 

and reduce agrochemical dependency positions 

them as essential components in building 

resilient and sustainable agroecosystems 

(Kalamulla et al., 2022). A synthesized overview 

of these ecological contributions is presented in 

Table 4, highlighting key soil functions 

supported by mycorrhizal activity alongside 

relevant empirical evidence. 
 

Table 4. Ecosystem Functions of Mycorrhizal Fungi 

Function Mechanism Ecological Benefit Reference 

Glomalin 

production 

Secreted glycoproteins from 

AMF hyphae 

Promotes soil aggregation and 

C sequestration 

(Zhou et al., 

2023) 

Microbial 

diversity 

Modulates rhizosphere via 

exudates 

Suppresses pathogens; 

supports beneficial taxa 

(Pantigoso et 

al., 2022) 

Nutrient 

cycling 

Enhances mineralization and 

nutrient fluxes 

Improves soil fertility, reduces 

nutrient loss 

(Gou et al., 

2022) 

Fertilizer 

reduction 

Increases nutrient-use 

efficiency 

Lowers reliance on synthetic 

inputs 

(Wahab et al., 

2023) 
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6. APPLICATIONS IN SUSTAINABLE 

AGRICULTURE 

The integration of mycorrhizal fungi into 

sustainable agriculture practices has emerged as 

a promising strategy to reconcile productivity 

with environmental stewardship. Their capacity 

to enhance nutrient uptake, promote soil health, 

and improve crop resilience positions them as 

powerful allies in the transition away from high-

input conventional systems. In this context, 

mycorrhizal fungi are increasingly employed in 

the development of biofertilizers, used in organic 

farming, and incorporated into broader 

agroecological frameworks (Herath et al., 2024). 

6.1. Use in Biofertilizers and Organic Farming 

Mycorrhizal biofertilizers, composed of viable 

fungal propagules—spores, hyphal fragments, 

and colonized root pieces—are now widely used 

to augment soil fertility in both certified organic 

and low-input conventional systems. These bio-

inoculants serve as a sustainable alternative to 

synthetic fertilizers, promoting nutrient 

availability while reducing environmental 

externalities (Berruti et al., 2016). Numerous 

field studies have shown that AMF inoculation 

significantly improves nutrient-use efficiency 

and crop yield under organic farming conditions, 

where synthetic inputs are restricted. In organic 

tomato and carrot production systems, AMF 

application has led to enhanced root 

development, increased phosphorus uptake, and 

greater marketable yields, even under reduced 

fertility regimes (Keller-Pearson et al., 2020). 

Recent meta-analyses support these findings. A 

global review reported that AMF-based 

inoculation under organic systems increased 

plant biomass by an average of 28%, with 

concurrent improvements in phosphorus use 

efficiency and plant nutrient status (Burak et al., 

2024). The ability of mycorrhizae to stabilize 

yields in organically managed soils is especially 

valuable under conditions of environmental 

stress, where nutrient delivery from 

mineralization processes may be asynchronous 

with plant demand (Khan et al., 2024). 

6.2. Commercial Inoculants – Current 

Products and Challenges 

A growing number of commercial mycorrhizal 

inoculants are now available in global markets, 

targeted at a wide range of crops and soil types. 

These products vary widely in formulation—

ranging from granular and liquid suspensions to 

seed coatings and root dips—and are produced 

by both small-scale biotechnological firms and 

major agro-input corporations. Key genera 

commonly used in these products include 

Rhizophagus, Funneliformis, and 

Claroideoglomus for AMF, and Pisolithus and 

Laccaria for ectomycorrhizal applications 

(Basiru et al., 2020). 

However, challenges remain in ensuring the 

efficacy, consistency, and scalability of 

commercial inoculants. Field performance is 

often influenced by multiple factors, including 

soil physicochemical conditions, native microbial 

communities, crop genotype, and farming 

practices. Moreover, the establishment of 

introduced mycorrhizal strains can be inhibited 

by competition with indigenous fungi or 

disrupted by fungicide residues in the soil 

(Ghorui et al., 2025). Recent studies emphasize 

the importance of site-specific strain selection 

and the use of multi-species consortia to improve 

inoculant adaptability and ecological function. 

To address regulatory and quality control 

concerns, several international agencies have 

called for standardized protocols for inoculant 

testing, viability assessment, and labeling 

accuracy. Advances in microbial encapsulation 

technology and shelf-life stabilization are also 

being explored to enhance product effectiveness 

and farmer adoption (Berninger et al., 2018). 

6.3. Integration into Agroecological Practices 

and Crop Rotation 

Mycorrhizal fungi are well-suited for 

incorporation into agroecological farming 
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models, where biodiversity, ecosystem services, 

and soil health are central tenets. In such 

systems, AMF can be integrated with 

conservation tillage, cover cropping, 

intercropping, and diversified crop rotations to 

sustain their populations and maximize 

ecological function. For instance, studies have 

shown that cover crops such as clover and vetch 

maintain AMF propagule density during fallow 

periods, thereby supporting early colonization 

and nutrient uptake in subsequent cash crops 

(Trinchera et al., 2021). 

Rotational designs that include mycotrophic 

crops—such as maize, sorghum, and legumes—

can enhance the continuity of the mycorrhizal 

network, improving both crop performance and 

soil biological activity over time (Bakhshandeh 

et al., 2017). In contrast, continuous monoculture 

or the frequent cultivation of non-mycorrhizal 

crops like brassicas has been shown to reduce 

AMF abundance and diversity, underscoring the 

importance of strategic crop sequencing (Jansa et 

al., 2006). 

Moreover, the integration of AMF with other 

biological inputs such as composts, vermicast, 

and microbial consortia is being explored as part 

of regenerative soil management frameworks. 

These combinations have demonstrated 

synergistic effects on nutrient cycling, disease 

suppression, and soil carbon stabilization under 

both tropical and temperate farming conditions 

(Cavagnaro, 2014). 

In conclusion, the application of mycorrhizal 

fungi in sustainable agriculture represents a 

viable path toward reduced chemical 

dependency, improved soil fertility, and resilient 

crop production. However, realizing their full 

potential requires a systems-level approach that 

incorporates ecological principles, localized 

knowledge, and innovations in microbial 

technology (Helena Devi et al., 2021). 

 

 

7. CHALLENGES AND RESEARCH GAPS 

Despite the well-documented benefits of 

mycorrhizal fungi in agriculture and ecology, 

several challenges continue to hinder their 

widespread and effective utilization, particularly 

in field-scale applications. Among the most 

significant limitations is the inherent variability 

in plant response to mycorrhizal colonization, 

which can be influenced by host specificity, 

fungal strain compatibility, and environmental 

conditions. Not all plant species exhibit the same 

degree of responsiveness to mycorrhizal 

inoculation, and even within a single crop, 

genotypic differences can result in variable 

symbiotic efficiency and nutrient acquisition 

outcomes (Owiny & Dusengemungu, 2024). 

Host specificity remains a critical determinant of 

the success of mycorrhizal associations. Some 

fungal strains exhibit a narrow host range and 

may form effective symbioses only with select 

plant species or cultivars (d’Entremont & Kivlin, 

2023). This specificity complicates the 

development of broad-spectrum inoculants and 

necessitates a more tailored approach to 

inoculum selection. Recent studies using high-

throughput sequencing and isotopic tracing have 

shown that differential colonization patterns can 

significantly affect nutrient flow dynamics and 

yield outcomes in crops such as maize, soybean, 

and rice. Moreover, indigenous soil fungi often 

compete with or outcompete introduced strains, 

affecting the establishment and persistence of 

commercial inoculants (Kaminsky et al., 2019). 

Environmental and edaphic factors also play a 

critical role in modulating mycorrhizal 

colonization and function. Soil pH, temperature, 

moisture, and organic matter content all 

influence the density and activity of both fungal 

propagules and host roots. Acidic or alkaline 

soils may inhibit spore germination or root 

penetration, while extreme temperatures can 

suppress hyphal extension and nutrient exchange  
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efficiency (Jansa et al., 2009). Additionally, 

tillage practices, pesticide use, and synthetic 

fertilizer application can disrupt mycorrhizal 

networks or inhibit their formation altogether, 

undermining the potential benefits of inoculation 

(Barber et al., 2013). 

Another challenge lies in the scalability and 

consistency of field-level applications. While 

promising results are often reported under 

controlled greenhouse conditions, translating 

these benefits to heterogeneous field 

environments has proven more complex (Guan et 

al., 2023). Factors such as inconsistent inoculum 

quality, suboptimal application techniques, and 

lack of farmer awareness contribute to the 

variable success of mycorrhizal technologies in 

real-world contexts. The interaction of 

mycorrhizal fungi with other components of the 

soil microbiome adds another layer of 

complexity, as these relationships are dynamic 

and context-dependent (Madawala, 2021). 

Furthermore, a considerable gap persists in the 

availability of region-specific and crop-specific 

studies. Much of the existing research has been 

concentrated in temperate regions, with a focus 

on a limited number of economically important 

crops (Kumar et al., 2022). There is a pressing 

need for more studies that evaluate native 

mycorrhizal biodiversity and functional potential 

in tropical, arid, and high-altitude ecosystems, 

where these symbioses may play an even more 

critical role in plant survival and productivity. 

Likewise, more research is needed to optimize 

inoculation protocols for underutilized and 

indigenous crops that form the backbone of 

smallholder and subsistence farming systems 

(Madouh & Quoreshi, 2023). 

In summary, while the promise of mycorrhizal 

fungi in sustainable agriculture is substantial, 

addressing these multifaceted challenges requires 

a coordinated research agenda. Advances in 

molecular biology, microbial ecology, and 

precision agriculture offer new tools to better 

understand and manage mycorrhizal interactions, 

but their practical implementation must be 

grounded in site-specific realities and informed 

by local ecological knowledge (Martin & Van 

Der Heijden, 2024). 

8. CONCLUSION AND FUTURE 

PERSPECTIVES 

Mycorrhizal fungi represent a foundational 

component of terrestrial plant ecosystems and a 

pivotal tool in advancing sustainable agriculture. 

Their symbiotic association with plant roots not 

only facilitates enhanced uptake of essential 

nutrients—most notably phosphorus and 

micronutrients—but also contributes to improved 

plant health, increased yield stability, and 

reduced dependence on chemical fertilizers. In 

doing so, these fungi align with global goals to 

reduce environmental degradation, mitigate 

climate change, and ensure food security through 

more resilient and regenerative farming systems 

(Dhiman et al., 2022). 

Beyond their agronomic benefits, mycorrhizal 

fungi also perform vital ecosystem services. 

Through the secretion of glomalin, they improve 

soil structure and water retention; through 

interactions with other microbial communities, 

they foster biodiversity and suppress soil-borne 

pathogens (Ghorui et al., 2024). Their role in 

enhancing nutrient cycling and carbon 

sequestration places them at the intersection of 

soil biology and climate resilience, underscoring 

their relevance in both scientific research and 

agricultural policy. Especially in the face of 

increasing climate variability, mycorrhizae offer 

a biological means to buffer crops against abiotic 

stresses such as drought, nutrient scarcity, and 

soil degradation (Raihan, 2023). 

However, to fully harness the potential of 

mycorrhizal fungi, a comprehensive and 

interdisciplinary approach is essential. This 

includes advancing our understanding of fungal 

ecology, host specificity, and strain compatibility 

through modern molecular and ecological tools 

(Garg et al., 2025). Likewise, addressing 

challenges related to large-scale inoculant 
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production, field consistency, and farmer 

adoption requires collaboration between 

microbiologists, agronomists, extension services, 

and policymakers. The integration of 

mycorrhizal technologies into national and 

international agricultural strategies—particularly 

those aimed at low-input and smallholder 

systems—should be prioritized to promote 

equitable access to sustainable innovations 

(Díaz-Rodríguez et al., 2025). 

Future research must also be regionally 

contextualized, accounting for local soil types, 

climate conditions, cropping systems, and 

indigenous mycorrhizal diversity. Participatory 

approaches involving farmers, researchers, and 

community stakeholders will be key in tailoring 

interventions that are both scientifically robust 

and socioeconomically viable(Chave et al., 2019; 

Rillig et al., 2016). Furthermore, the 

development of regulatory frameworks and 

quality standards for mycorrhizal inoculants will 

play a crucial role in ensuring their efficacy and 

reliability in diverse agroecological 

contexts.(Salomon et al., 2022; Tiwari & Park, 

2024) 

In conclusion, the integration of mycorrhizal 

fungi into modern agricultural paradigms offers a 

scientifically grounded and ecologically sound 

strategy for enhancing crop productivity, 

safeguarding soil health, and fostering climate 

resilience. Their multifunctional benefits 

underscore the urgent need for sustained 

investment in research, education, and policy 

support to unlock their full potential in meeting 

the agricultural challenges of the twenty-first 

century (Ahmad et al., 2024). 
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